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S_Y

An investigation of several afterbody-ejector configurations on a

pylon-supported nacelle model has been completed in the Langley 16-foot

transonic tunnel at Mach numbers from 0.80 to 1.05. The propulsive

performance of two nacelle afterbodies with low boattailing and long

ejector spacing was compared with a configuration corresponding to a

turbojet-engine installation having a highly boattailed afterbody with

a short ejector. The jet exhaust was simulated with a hydrogen peroxide

turbojet simulator. The angle of attack was maintained at 0°, and the

average Reynolds number based on body length was 20 × 106.

The results of the investigation indicated that the configuration

with a conical afterbody with smooth transition to a 15 ° boattail angle

had large beneficial jet effects on afterbody pressure-drag coefficient

and had the best thrust-minus-drag performance of the afterbody-ejector

configurations investigated.

INTRODUCTION

If the subsonic-cruise--supersonic-dash airplane is to perform

efficiently at each speed condition, the primary nozzle, the ejector

nozzle, and afterbody shape must be varied. This is usually done with

a double-flap arrangement at the turbojet-engine exit. During cruise

flight with afterburner off, the nacelle has a much larger boattail
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angle than at supersonic flight with afterburner on. Several investiga-
tions have been conducted to evaluate the _ffect of boattailing on the
performance of afterbodies (e.g., refs. i _o4) and to evaluate the
internal performance of ejectors (refs. 5 _o 9). The results of these
investigations indicate that the perfoman_e of a typical pylon-
supported nacelle installation with afterburner off (low spacing ratio
and large boattail angle) could be improvel if the ejector spacing ratio
could be increased to allow a lower boattaLl angle.

An investigation was conducted in the Langley 16-foot transonic
tunnel to evaluate the propulsive performance of afterbody-ejector com-
binations using a pylon-supported nacelle nodel with a hot-jet exhaust.
Three afterbody shapes and two ejector configurations corresponding to
nonafterburning arrangements were used in the investigation. The com-
bined internal and external performance of a steeply boattailed body
with a typical short ejector was comparedwith those for lower boat-
tailed bodies with extended ejectors to determine if gains could be
obtained with the compromiseconfiguratiors. Tests were conducted at
Machnumbersfrom 0.80 to 1.05 at an angle of attack of 0° and at primary
jet total-pressure ratios from 1.0 (jet off) to 5.0. At each Machnum-
ber, the primary jet total-pressure ratio was varied over the range for
several values of secondary air weight flew. A hydrogen peroxide turbo-

jet simulator was used for the investigation. (See ref. i0.)

SYMBOLS

A

CD

area, sq ft

drag coefficient, D
qimax

C d flow coefficient,
w i

TTM

CD, afterbody press1_e-drag eoeff:cient, La A1_a x

CD,ex

CD,fore

CF

external-drag coefficient, Ci),a + CD,fore

forebody drag coefficient incl.uding model skin-friction-drag

coefficient

thrust coefficient, F
qAmax



CFej

CFi, c

CL

Cm

Cp

D

d

F

Fej

Fi c

Fp

g

L

Z

M

m

P

ejector jet thrust coefficient, Fej

qAmax

ideal jet thrust coefficient for convergent nozzle,
Fi,c

qAmax

L
lift coefficient,

qAmax

pitching-moment coefficient about 0.50 nacelle length,
Pitching moment

qAmaxX

pressure coefficient,
P% - Poo

q

drag, ib

diameter, in.

jet thrust, ib

ejector jet thrust,
A s Ae

p s

lb

ideal jet thrust for convergent nozzle,

Wp _ 2_- TgR _ Tt, j + Ap(pp - p_, lb

primary-nozzle jet thrust, ib

gravitational acceleration, ft/sec 2

distance from afterbody exit to nozzle exit, in.; lift, ib

length of afterbody, in.

free-streamMach number

mass flow, slugs/sec

static pressure, ib/sq ft



Pt

Pt, j/P_

q

R

r

T t

V

w

wi

Wp _T t ,p

X

x

7

e

Subscripts:

a

b

bal

total pressure, ib/sq ft

ratio of primary jet total p_essure to free-stream static

pressure

free-stream dynamic pressure, ib/sq ft

gas constant, ft/°R

model radius, in.

stagnation temperature, oR

velocity, ft/sec

weight flow, ib/sec

ideal weight flow for sonic exit,

7+1

pt, jAp\7---_-T/ _R_tg., Ib/sec

corrected secondary-to-prinm_y weight-flow ratio

total nominal length of mod_l, 60 in.

longitudinal distance from ]eference point, positive rear-

ward, in.

ratio of specific heats

meridian angle, positive co_mterclockwise looking forward

from afterbody exit_ deg

afterbody

base

balance

e exit of afterbody



ex

f

fore

i

J

max

P

s

t

i

2

3

4

external

primary nozzle base

forebody

ideal

jet

local

maximum

primary nozzle

seal, secondary

total

free-stream conditions

forward compartment

outer compartment

secondary air passage

tailpipe

APPARATUS AND METHODS

Wind Tunnel

This investigation was conducted in the Langley 16-foot transonic

tunnel, which is a single-return atmospheric wind tunnel with an octag-

onal slotted test section and continuous air exchange. It has a speed

range from a Mach number of 0.20 to about 1.10 and the Mach number is

varied by changing rotational speed of drive fans.

Tests

For this investigation the model was held at an angle of attack of

0° throughout the Mach number range from 0.80 to 1.05. The average

Reynolds number based on body length was about 20 × 106. The hydrogen
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peroxide turbojet-engine simulator was operated at ratios of primary

jet total pressure to free-stream static pressure from 1.0 (jet off) to

5.0 at all Mach numbers investigated. For t]Le effect of secondary air

on the net performance, a complete range of _econdary air weight flow

from 0 (no flow) to approximately 0.25 ib/se(_ was investigated; how-

ever, in this paper only the values of O, 0.(16, and 0.20 Ib/sec of sec-

ondary air weight flow are presented.

An investigation was made to determine _,he interference effect of

the pylon on model pressure distributions, i_ comparison was made of

the pylon-supported model, a sting-mounted mc)del, and the pylon-supported

model with a dummy sting. For all these tes-;s, the turbojet-engine

simulator was off.

Model and Support System

A sketch of the pylon-supported nacelle turbojet-engine simulator

model used in the investigation is presented in figure i and is described

in reference ii. A photograph of the model mstalled in the t_st section

of the Langley 16-foot transonic tunnel is given in figure 2. The

nacelle consisted of an ogival forebody, a cylindrical centerbody having

a maximum diameter of 6.50 inches, and after)odies which were detachable

at the 48.875-inch station.

The afterbodies consisted of three confLgurations which were

designed for nonafterburner cruise flight at a Mach number of about

0.90. A sketch of the afterbodies giving dimensions, pressure-orifice

locations, and relative position of the turb0jet-engine simulator nozzle

is presented in figure 3. Afterbody I, whic_ was considered to be the

basic afterbody tested, had a spacing ratio _f 0.789 and a boattail

angle of 28 °. This afterbody was selected b_cause it represented some

current nacelle designs. Both afterbody II ind afterbody III had a

spacing ratio of 1.440 and a boattail angle _f 15°. They were selected

to give a lower afterbody drag and also to d_termine whether spacing

ratio would cause a loss in ejector jet thru3t. The only difference

between afterbodies II and III was the generDus radius of curvature

applied to afterbody III at the start of the conical boattail. (See

fig. 3.) A photograph showing a comparison of the three afterbodies is

presented in figure 4.

The support system consisted of a conventional sting with an inte-

gral sweptforward pylon on the forward end inverted with reference to

a normal underwing mounting. The nacelle was attached to the pylon

through a four-component internal strain-gage balance. A separate thrust

measuring system was also mounted from the _ylon support with a hydrogen

peroxide turbojet-engine simulator connected to the thrust balance. A



schematic diagram showing the thrust and drag systems with the pressures
and areas affected by each is shownin figure 5-

In order to evaluate the interference effect of pylon strut support
on external drag, the nacelle was attached through the four-component
internal balance to a conventional sting passing through the rear of
the model. The sting consisted of a cylindrical section 2 inches in
diameter with a conical half-angle of 5.0° which began at station 63.39.
The pylon support system with a dummysting of the sametype described
previously was also used to give a comparison of effect on afterbody
drag. A photograph showing the different support systems with after-
body III installed in the tunnel test section is presented in figure 6.

Secondary air was used as a coolant for the turbojet-engine simu-
lator and also to comparethe effect of secondary air quantity on the
ejector thrust characteristics. The secondary air camethrough the
pylon support system and was distributed through small openings of 1/16-
inch diameter around the turbojet-engine simulator. (See figs. i and 5.)

A hydrogen peroxide turbojet-engine simulator similar to that
described in reference i0 was used for this investigation. The simula-
tor unit produces a hot-jet exhaust (1,820 ° R) which is very similar to
the exhaust of a turbojet engine.

Instrumentation

Pressures were measuredat several meridian angles around the after-
body, on the inside of the afterbody (ejector wall), and on the outside
of the primary-nozzle flap. (See fig. 3-) In addition, primary jet
total pressures, secondary air inlet and exit static pressures, and
primary and secondary total temperatures were measured. (See fig. 5.)
For the basic tests the pressure tubing from each orifice was conducted
out of the nacelle through the pylon support and connected to an elec-
trical pressure transducer located in the sting barrel. The electrical
pressure transducers were manifolded to a commonreference pressure and
the whole transducer manifold system was immersedin a constant-
temperature bath to keep both the zero and sensitivity shifts of the
transducers to a minimum. For the interference tests the pressures
were measuredwith a multiple-tube mercury manometer.

Forces and momentson the nacelle were measuredby a four-component
strain-gage balance. The thrust forces of the simulator were measured
on a one-componentthrust balance. (See fig. 5.)

Primary jet weight flow was measuredby using a vane-type electronic
flowmeter located in the hydrogen peroxide supply line (ref. i0). A
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standard venturi with a 1-inch-diameter throa_ located in the air

supply line was used to measure the secondary flow passing through the

model.

Data Reduction

Electrical signals from the pressure transducers were transmitted

to carrier amplifiers and then to recording o_cillographs located in

the tunnel control room. The pressures, forces, and temperatures were

converted to standard pressure and force coefEicients by machine com-

putation from the trace deflections on the paper film. It should be

noted that positive normal force is down for this test setup, since the

model is considered to be inverted from a no_nal underwing pylon mounting.

Drag system.- The drag component of the main balance measured the
axial forces on the external surface of the n_celle and the force on the

inside of the afterbody to the center of the rear seal of the model

(see figs. i and 5), plus an internal pressur_ force. The equation for

the external drag is as follows:

A e

s,2

Afterbody drag forces were obtained from the integrated pressures over

the afterbody. The external drag of the nacelle assembly is defined as

the sum of all the axial forces acting on the external surfaces of the

model to the ejector exit_ or simply the aftcrbody drag plus the fore-

body drag. Therefore, the forebody drag is 8s follows:

Dfore = Dex - D a

Figure 5 shows the location of the balarce, areas, and pressures

used in the external-drag equation. It is tc be noted that the fore-

body drag includes the forebody pressure and viscous drag plus after-

body skin-friction drag. Figure 7 shows effect of Mach number on fore-

body drag coefficient and on the forebody drEg coefficient with calculated

afterbody skin-friction-drag coefficient remcved. The afterbody skin-

friction-drag coefficient was calculated for a turbulent boundary layer.

These data are an average of all configurations tested and include pylon

interference on the forebody drag.

Thrust system.- The thrust balance measured the primary nozzle

thrust and some internal forces, plus the incoming momentum and pressure

force of the secondary air. The primary nozzle thrust was obtained as

follows:



where the location of the balance, areas, and pressures are presented
in figure 5.

The ejector thrust is obtained in the following manner:

As Ae

p s

The propulsive force can now be obtained by taking the difference of the

ejector thrust force and the external drag force:

Propulsive force = Fej - Dex

The secondary air weight flow was computed for each test point by

using the total and static pressures and the total temperature measured

at a calibrated venturi located in the supply system• Figure 8 shows

the variation of the corrected secondary-to-primary weight-flow ratio

with jet total-pressure ratio for all test Mach numbers at 0.06 and

0.20 ib/sec of secondary air weight flows•

Accuracy

The estimated accuracy of the data presented in this paper is as

follows:

M ............................... +0. 005

Pt,j/p _ ............................ -+0.i

Cp • . • • ° • • • • . • • . • • . • . . • • ° . . . . •

CFej .............................

CD

CL

Cm

Ws _ Tt'sWp Tt, p

±0.01

±0.01

.............................. ±0.01

.............................. ±0.005

.............................. ±0.001

........................... ±0.01
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RESULTSANDDISCUSSI)N

Primary-Nozzle Thrust and Flow Coefficients

with jet total-pressureThe variations of Wp/Wi and CF,p CFi,c
ratio are shownin figure 9. (The ideal weight flow and the ideal jet
thrust of the convergent nozzle are based on measuredpressure and
temperature.) The data are an average for a_l Machnumbersat each
jet total-pressure ratio. The flow coefficient increases from about
0.92 at Pt,j/p _ = 2.0 to 0.95 at Pt,j/p_ = 5.0, whereas the thrust-
coefficient ratio increases from about 0.89 at Pt,j/p _ = 2.0 to 0.95
at Pt,j/P_ = 5.0. These data are low because the convergence angle of
the nozzle is 35° (see ref. 12, for example); however, they are in fair
agreementwith the expected coefficients frcm convergent nozzles.

Support Interference E_fects

The pylon support for the nacelle mode] is swept back about 73° and
is considered to be typical for pylon mounting of jet-engine nacelles
in the transonic and low supersonic speed r_nges; however, it is recog-
nized that the support would have someintezference effects on the model.
In order to obtain a qualitative evaluation of the pylon interference
effects, afterbody III was also investigatec on a sting support system.
Inasmuch as it is well known (ref. 13) that a sting mayhave considerable
interference effects on bodies ahead of the support, a third setup was
employed. A dummysting identical to the r_al sting in the immediate
vicinity of the base was attached to the motel (see fig. 6) whenthe
model was supported by the pylon.

Figure i0 presents pressure distributic_ns, base pressure coeffi-
cients, drag coefficients, and cross-sectiol_al-area distributions for
the three types of support system. It is @_viousthat there is inter-
ference present for all types of mounting (_'igs. lO(a) and lO(b)); how-
ever, in practice most multijet nacelle ins_allations are pylon mounted,
and interferences similar to those shownhe_'ein for the pylon-supported
model would be realized. The data for the l_ting-supported model are
another indication of the need for careful ,_valuation of the support
interferences at transonic speeds. Note th,_ significant reduction in
the negative pressure peak (e = 0° to 90° ) _mdthe more positive pres-
sure coefficients over the rearmost section_ of the afterbody when com-
pared with the pylon-mounted data. Whent_ dummysting was installed,
the data (figs. lO(a) and lO(b)) did not in,Licate significant differ-
ences from the pylon-mounted data. This result maybe an indication
that the overall area distribution of the p_rlon-model combination has a
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much larger influence on the afterbody and base pressure than the small
additional area of the dummysting support (fig. lO(d)).

Figure lO(c) presents coefficients of afterbody pressure drag,
forebody drag, and external drag (jet off) for the Machnumberrange of
the investigation. The afterbody pressure-drag coefficients for the
pylon-supported and pylon-plus-dummy sting are nearly the sameat sub-
sonic speeds. At Machnumbersof 1.00 and above, the dummy-sting data
indicate a more pronounced interference effect approaching that of the
sting-supported values. The forebody drag coefficients and the external-
drag coefficients are also affected by support interferences, and the
data for both afterbodies I and III indicate a general reduction in drag
coefficient with the sting support.

Interference data taken from reference 13 and applied to the sting-
mountedmodel indicated that an interference-free model with afterbody III
would have substantially the sameexternal-drag coefficients as were
measuredby the pylon-supported model. This result maybe fortuitous in
that the area-distribution differences mayact in a compensating manner.
It is estimated, however, that the pylon-supported-model data fairly
represent a practical nacelle installation in spite of an unknowninter-
ference effect of the pylon.

Afterbody-Pressure Distributions

Effect of secondar_air flow on afterbody pressures.- Figure ii

presents pressure-coefficient data at station x/_ = 0.987 for O, 0.06,

and 0.20 ib/sec of secondary air flow. Station x/_ = 0.987 was chosen

because it was estimated that the largest effects would be shown here.

The addition of 0.20 ib/sec of secondary air flow acts in the manner of

base bleed for the jet-off cases at both Mach numbers, inasmuch as the

pressure coefficients become more positive. This is a typical result

of the addition of base-bleed flow (see refs. i and 14). When the jet

is operating at a jet total-pressure ratio of 4.0, the effect on the

pressures is generally the same as when the jet is off, except for

afterbody I at M = 1.05, where the addition of 0.20 ib/sec of secondary

air was detrimental. This detrimental effect is probably the result of

increased jet pumping on the separated flow over the 28 ° conical boattail.

Effect of jet total-pressure ratio on afterbod_ pressure distribu-

tions.- Pressure distributions over afterbodies I, II_ and III are shown

in figures 12, 13, and 14, respectively, for several Mach numbers and

nominal values of jet total-pressure ratio. It should be noted that

the data in figure 14 are presented for Ws = 0.20 ib/sec, and this value

has been shown in figure ii to have a small beneficial effect. The

data for afterbody I indicate that increasing jet total-pressure ratio

had a relatively small effect on the level of the pressure coefficients
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on the afterbody. In general, the slight effect noted was to makethe
pressures more negative; reference 4 indicates a similar trend for a
30° conical boattail. Jet operation has a beneficial effect on after-
body II, with the negative peak at x/Z = 0._0 being reduced and the
point of Cp = 0 being movedto lower value_ of x/Z when the jet
pressure ratio is increased. Similar pressure distributions and jet
effects have been observed previously. (For example, see refs. 3 and 4.)

Comparisonof figures 13 and 14 indicat_ s that the generous radius
applied to the sharp corner at the start of the conical afterbody reduces
the magnitude of the negative pressure peak. Jet operation further
reduces the negative pressure peak and the pcsitive pressure region gen-
erally becomeslarger. An example of the movementof the afterbody shock
forward on the boattail is shownin the shadc.wgraphpictures of figure 15.
The forward movementof the shock results frc_ jet interference with the
external flow and produces a larger positive pressure region on the
afterbody with increasing jet total-pressure ratio. Machnumberhas a
small effect on the pressure distributions; however_ a tendency for the
pressure peak to becomemore negative with i_creasing Machnumber is
noted for afterbody III, whereas the opposit_ trend occurs for
afterbody II.

Effect of jet total-pressure ratio on a_'terbody drag coefficient.-

The variation of afterbody pressure-drag coe:'ficient with jet total-

pressure ratio is shown in figure 16 for sew_ral _ch numbers and sec-

ondary air weight flows. These data were ob-;ained by integrating the

pressure distributions shown previously. It is noted that the effect

of jet operation is generally detrimental on afterbody I, the 28 ° boat-

tail, and beneficial on afterbodies II and ILl, the 15° boattails.

Where larger quantities of secondary air flow were used, the afterbody

pressure-drag coefficient decreased for all ,iet total-pressure ratios

below 5.0. Calculation of the jet boundary l_y the method of refer-

ence 15 indicated that the primary jet would impinge on the conical

ejector at jet total-pressure ratios of abou, 5. This impingement was

noted in the data when the secondary air pre;_sures and temperatures

suddenly increased. The consequent mixing o:" the primary and secondary

flows inside the ejector would eliminate the base-bleed effect of the

secondary flow and no significant effect of ;hese quantities of secondary

flow would be expected at jet total-pressure ratios of 5.0 and above.

This impingement effect would be modified in the case of an actual

installation, inasmuch as the ejector would _)robably be opened to at

least partial afterburning near a jet total-_ressure of 5.0.

Aerodynamic Characteristics

The variation of external-drag coefficient with jet total-pressure

ratio for several Mach numbers and secondary air weight flows is shown
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in figure 17. As would be expected, the results are similar to those

noted previously for the afterbody drag, since external-drag coefficient

is the sum of the forebody drag coefficient presented in figure 7 and the

afterbody pressure-drag coef_±cient presented in figure 16. It is noted

that afterbody III has the lowest external-drag coefficient of the

afterbodies investigated over most of the Mach number and jet total-

pressure ratio ranges.

Figure 18 shows the variation of lift coefficient CL and pitching-

moment coefficient Cm with jet total-pressure ratio for several Mach

numbers. The variations shown with increasing jet total-pressure ratio

are estimated to be due to misalinement of the primary jet in the ejector

nozzle because integration of the afterbody pressures for normal force

shows that only a small part (15 percent) of the variation is the result

of external effects. It was noted in all cases where large variations

occur that the internal pressures on one side of the ejector were con-

siderably more positive than on the other, and this fact is an indica-

tion that the primary jet was washing one wall and not the other. No

particular significance is attached to this condition; however, it

serves to point out the magnitude of the asymmetrical loads that can be

obtained if the primary stream is not centered in the ejector.

Performance Characteristics

The variation of ejector thrust and ideal thrust coefficients with

primary jet total-pressure ratio of the three afterbody configurations
is shown in figure 19 for all test Mach numbers. It can be seen that

the ejector thrust coefficient increased uniformly with primary jet

total-pressure ratio and indicated no sudden losses associated with jet

attachment. The addition of 0.20 ib/sec of secondary air flow increased

the ejector thrust to values obtained with the primary nozzle alone.

It is noted that the addition of 0.06 ib/sec of secondary air flow had

very little effect on the ejector thrust. The reason that 0.06 Ib/see

of secondary air flow has such a small effect is probably due to the

low total pressure of the secondary flow.

The performance of the ejectors and afterbodies is shown in fig-

ure 20 as variations in ejector jet thrust ratio and afterbody pressure-

drag coefficient over the Mach number range of the investigation. The

performance is presented at the scheduled pressure ratio for each Mach

number shown in figure 20. This variation of pressure ratio with Mach

number is considered to be typical for turbojet engines with subsonic-

cruise--supersonic-dash capabilities. The general level of the ejector

jet thrust ratio is of the order expected and the decrease in ejector

thrust ratio of about 0.02 from afterbody I to afterbodies II and III

is of the order indicated by the results of reference 5. (Note that
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jet thrust ratios of afterbodies II and III _re identical above a Math

number of 0.90.)

Afterbody III, which had a smooth transl.tion to the 15 ° boattail

angle, had the lowest external-drag coeffici_mt over the Mach number

range investigated. In order to evaluate th,_ relative performance of

the three configurations, plots of ejector ti_ust coefficient minus

external-drag coefficient are presented in fLgure 21. The thrust-minus-

drag performance of afterbody III was the be_t of the afterbodies inves-

tigated and shows that the design of an ejec_or should be integrated

with the afterbody design to obtain the maximum overall gains in per-

formance, even though the ejector may not be optimum.

CONCLUSIONS

An investigation of a pylon-supported n_celle model with three

afterbody-ejector configurations has been conducted in the Langley

16-foot transonic tunnel at an angle of attazk of 0° over a Mach number

range from 0.80 to 1.05. The results of the investigation have led to

the following conclusions:

i. The jet effect on afterbody I, which had a 28 ° boattail angle,

was generally detrimental and intensified with increasing Math number.

2. The jet effect on afterbodies II and III, which had 15 ° boattail

angles, was beneficial and generally similar for both afterbodies.

3. Afterbody III, which had a smooth transition to the 15 ° boattail

angle, had the lowest external-drag coefficient over the Mach number

range.

4. The increase in ejector spacing ratio from afterbody I to after-

body III resulted in a loss of about 0.02 ir ejector jet thrust ratios;

however, the thrust-minus-drag performance ¢f afterbody III was the best

of the afterbodies investigated and shows t_at the design of an ejector

should be integrated with the afterbody design to obtain the maximum

overall performance.

Langley Research Center,

National Aeronautics and Space Adminislration,

Langley Field, Va., October 8, 19_8.
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(a) Pylon mounted.

i_ _ _!_ i i v _ii i_iii!ii!!!

(b) Sting mounted.

(c) Pylon mounted with dummy sting. L-58-109a

Figure 6.- Photograph of afterbody III mounted in tunnel test section.
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